Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067591

RESUMO

BACKGROUND: Neuropathic pain is drug-resistant to available analgesics and therefore novel treatment options for this debilitating clinical condition are urgently needed. Recently, two drug candidates, namely mirogabalin and cebranopadol have become a subject of interest because of their potential utility as analgesics for chronic pain treatment. However, they have not been investigated thoroughly in some types of neuropathic pain, both in humans and experimental animals. METHODS: This study used the von Frey test, the hot plate test and the two-plate thermal place preference test supported by image analysis and machine learning to assess the effect of intraperitoneal mirogabalin and subcutaneous cebranopadol on mechanical and thermal nociceptive threshold in mouse models of neuropathic pain induced by streptozotocin, paclitaxel and oxaliplatin. RESULTS: Mirogabalin and cebranopadol effectively attenuated tactile allodynia in models of neuropathic pain induced by streptozotocin and paclitaxel. Cebranopadol was more effective than mirogabalin in this respect. Both drugs also elevated the heat nociceptive threshold in mice. In the oxaliplatin model, cebranopadol and mirogabalin reduced cold-exacerbated pain. CONCLUSIONS: Since mirogabalin and cebranopadol are effective in animal models of neuropathic pain, they seem to be promising novel therapies for various types of neuropathic pain in patients, in particular those who are resistant to available analgesics.


Assuntos
Neuralgia , Nociceptividade , Camundongos , Humanos , Animais , Oxaliplatina/uso terapêutico , Estreptozocina , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Neuralgia/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
2.
Eur J Med Chem ; 261: 115832, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837674

RESUMO

Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), ß-secretase (BACE1), amyloid ß aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 µM, mGAT4 IC50 = 12 µM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aß40 aggregation inhibitory activity (IC50 = 1.57 µM and 99 % at 10 µM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 µM), Aß aggregation (79 % at 10 µM) and mGATs (mGAT1 IC50 = 30 µM, mGAT4 IC50 = 25 µM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inibidores da Colinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Desenho de Fármacos , Ácido Aspártico Endopeptidases/metabolismo , Acetilcolinesterase/metabolismo
3.
Acta Pharm Sin B ; 13(5): 2152-2175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250172

RESUMO

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN 19, a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone 19 has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC50 = 1.06 ± 0.31 nmol/L) and hMAO-B (IC50 = 4.46 ± 0.18 µmol/L). The crystal structures of 19 with hBChE and hMAO-B provided the structural basis for potent binding, which was further studied by enzyme kinetics. Compound 19 acted as a free radical scavenger and biometal chelator, crossed the blood-brain barrier, was not cytotoxic, and showed neuroprotective properties in a 6-hydroxydopamine cell model of Parkinson's disease. In addition, in vivo studies showed the anti-amnesic effect of 19 in the scopolamine-induced mouse model of AD without adverse effects on motoric function and coordination. Importantly, chronic treatment of double transgenic APPswe-PS1δE9 mice with 19 reduced amyloid plaque load in the hippocampus and cortex of female mice, underscoring the disease-modifying effect of QN 19.

4.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240392

RESUMO

The lack of selective pharmacological tools has limited the full unraveling of G protein-coupled receptor 18 (GPR18) functions. The present study was aimed at discovering the activities of three novel preferential or selective GPR18 ligands, one agonist (PSB-KK-1415) and two antagonists (PSB-CB-5 and PSB-CB-27). We investigated these ligands in several screening tests, considering the relationship between GPR18 and the cannabinoid (CB) receptor system, and the control of endoCB signaling over emotions, food intake, pain sensation, and thermoregulation. We also assessed whether the novel compounds could modulate the subjective effects evoked by Δ9-tetrahydrocannabinol (THC). Male mice or rats were pretreated with the GPR18 ligands, and locomotor activity, depression- and anxiety-like symptoms, pain threshold, core temperature, food intake, and THC-vehicle discrimination were measured. Our screening analyses indicated that GPR18 activation partly results in effects that are similar to those of CB receptor activation, considering the impact on emotional behavior, food intake, and pain activity. Thus, the orphan GPR18 may provide a novel therapeutic target for mood, pain, and/or eating disorders, and further investigation is warranted to better discern its function.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Roedores , Ratos , Masculino , Camundongos , Animais , Ligantes , Dor/tratamento farmacológico , Receptores de Canabinoides , Dronabinol/farmacologia , Receptor CB1 de Canabinoide , Relação Dose-Resposta a Droga , Receptores Acoplados a Proteínas G
5.
Eur J Med Chem ; 249: 115135, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696766

RESUMO

The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and ß1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 µM) and hERG inhibition (less than 50% at 10 µM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Humanos , Butirilcolinesterase/metabolismo , Cristalografia , Inibidores da Colinesterase/química , Doença de Alzheimer/metabolismo , Escopolamina/farmacologia , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
6.
Pharmacol Rep ; 75(1): 128-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401763

RESUMO

BACKGROUND: Epilepsy frequently coexists with neuropathic pain. Our approach is based on the search for active compounds with multitarget profiles beneficial in terms of potential side effects and on the implementation of screening for potential multidirectional central activity. METHODS: Compounds were synthesized by means of chemical synthesis. After antiseizure and neurotoxicity screening in vivo, KM-408 and its enantiomers were chosen for analgesic activity evaluations. Further safety studies included acute toxicity in mice, the effect on normal electrocardiogram and on blood pressure in rats, whole body plethysmography in rats, and in vitro and biochemical assays. Pharmacokinetics has been studied in rats after iv and po administration. Metabolism has been studied in vivo in rat serum and urine. Radioligand binding studies were performed as part of the mechanism of action investigation. RESULTS: Selected results for KM-408: Ki sigma = 7.2*10-8; Ki 5-HT1A = 8.0*10-7; ED50 MES (mice, ip) = 13.3 mg/kg; formalin test (I phase, mice, ip)-active at 30 mg/kg; SNL (rats, ip)-active at 6 mg/kg; STZ-induced pain (mice, ip)-active at 1 mg/kg (von Frey) and 10 mg/kg (hot plate); hot plate test (mice, ip)-active at 30 mg/kg; ED50 capsaicin test (mice, ip) = 18.99 mg/kg; tail immersion test (mice)-active at 0.5%; corneal anesthesia (guinea pigs)-active at 0.125%; infiltration anesthesia (guinea pigs)-active at 0.125%. CONCLUSIONS: Within the presented study a novel compound, R,S-2-((2-(2-chloro-6-methylphenoxy)ethyl)amino)butan-1-ol hydrochloride (KM-408) with dual antiseizure and analgesic activity has been developed for potential use in neuropathic pain treatment.


Assuntos
Epilepsia , Neuralgia , Ratos , Camundongos , Animais , Cobaias , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Neuralgia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Epilepsia/tratamento farmacológico , Capsaicina , Modelos Animais de Doenças
7.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080253

RESUMO

Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.


Assuntos
Lipopolissacarídeos , Doenças Neuroinflamatórias , Citocinas , Humanos , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Microglia/patologia
8.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164136

RESUMO

Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.


Assuntos
Anticonvulsivantes , Inibidores da Monoaminoxidase , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores , Fenilalanina , Receptores de AMPA/antagonistas & inibidores , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Fenilalanina/química , Fenilalanina/farmacologia , Receptores de AMPA/metabolismo
9.
Eur J Med Chem ; 225: 113792, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34530376

RESUMO

The lack of an effective treatment makes Alzheimer's disease a serious healthcare problem and a challenge for medicinal chemists. Herein we report interdisciplinary research on novel multifunctional ligands targeting proteins and processes involved in the development of the disease: BuChE, 5-HT6 receptors and ß-amyloid aggregation. Structure-activity relationship analyses supported by crystallography and docking studies led to the identification of a fused-type multifunctional ligand 50, with remarkable and balanced potencies against BuChE (IC50 = 90 nM) and 5-HT6R (Ki = 4.8 nM), and inhibitory activity against Aß aggregation (53% at 10 µM). In in vitro ADME-Tox and in vivo pharmacokinetic studies compound 50 showed good stability in the mouse liver microsomes, favourable safety profile and brain permeability with the brain to plasma ratio of 6.79 after p.o. administration in mice, thus being a promising candidate for in vivo pharmacology studies and a solid foundation for further research on effective anti-AD therapies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenvolvimento de Medicamentos , Fármacos Neuroprotetores/farmacologia , Receptores de Serotonina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Electrophorus , Células Hep G2 , Cavalos , Humanos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
10.
ACS Chem Neurosci ; 12(16): 3073-3100, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34347423

RESUMO

Neuropathic pain resistance to pharmacotherapy has encouraged researchers to develop effective therapies for its treatment. γ-Aminobutyric acid (GABA) transporters 1 and 4 (mGAT1 and mGAT4) have been increasingly recognized as promising drug targets for neuropathic pain (NP) associated with imbalances in inhibitory neurotransmission. In this context, we designed and synthesized new functionalized amino acids as inhibitors of GABA uptake and assessed their activities toward all four mouse GAT subtypes (mGAT1-4). According to the obtained results, compounds 2RS,4RS-39c (pIC50 (mGAT4) = 5.36), 50a (pIC50 (mGAT2) = 5.43), and 56a (with moderate subtype selectivity that favored mGAT4, pIC50 (mGAT4) = 5.04) were of particular interest and were therefore evaluated for their cytotoxic and hepatotoxic effects. In a set of in vivo experiments, both compounds 50a and 56a showed antinociceptive properties in three rodent models of NP, namely, chemotherapy-induced neuropathic pain models (the oxaliplatin model and the paclitaxel model) and the diabetic neuropathic pain model induced by streptozotocin; however compound 56a demonstrated predominant activity. Since impaired motor coordination is also observed in neuropathic pain conditions, we have pointed out that none of the test compounds induced motor deficits in the rotarod test.


Assuntos
Aminoácidos , Neuralgia , Analgésicos/farmacologia , Animais , Proteínas da Membrana Plasmática de Transporte de GABA , Camundongos , Neuralgia/tratamento farmacológico , Ácido gama-Aminobutírico
11.
Front Pharmacol ; 12: 691598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276379

RESUMO

Posttraumatic stress disorder (PTSD) has been associated with abnormal regulation of the hypothalamic-pituitary-adrenal gland axis (HPA). Women demonstrate a more robust HPA response and are twice as likely to develop PTSD than men. The role of sex hormones in PTSD remains unclear. We investigated whether post-trauma chronic treatment with the GABA-ergic agent tiagabine and dopamine-mimetic pramipexole affected the behavioral outcome and plasma levels of corticosterone, testosterone, or 17ß-estradiol in female and male mice. These medications were investigated due to their potential capacity to restore GABA-ergic and dopaminergic deficits in PTSD. Animals were exposed to a single prolonged stress procedure (mSPS). Following 13 days treatment with tiagabine (10 mg/kg) or pramipexole (1 mg/kg) once daily, the PTSD-like phenotype was examined in the fear conditioning paradigm. Plasma hormones were measured almost immediately following the conditioned fear assessment. We report that the exposure to mSPS equally enhanced conditioned fear in both sexes. However, while males demonstrated decreased plasma corticosterone, its increase was observed in females. Trauma elevated plasma testosterone in both sexes, but it had no significant effects on 17ß-estradiol. Behavioral manifestation of trauma was reduced by pramipexole in both sexes and by tiagabine in females only. While neither compound affected corticosterone in stressed animals, testosterone levels were further enhanced by tiagabine in females. This study shows sex-dependent efficacy of tiagabine but not pramipexole in a mouse model of PTSD-like symptoms and a failure of steroid hormones' levels to predict PTSD treatment efficacy.

12.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207748

RESUMO

Tiagabine is an antiepileptic drug used for the treatment of partial seizures in humans. Recently, this drug has been found useful in several non-epileptic conditions, including anxiety, chronic pain and sleep disorders. Since tachycardia-an impairment of cardiac rhythm due to cardiac ion channel dysfunction-is one of the most commonly reported non-neurological adverse effects of this drug, in the present paper we have undertaken pharmacological and numerical studies to assess a potential cardiovascular risk associated with the use of tiagabine. A chemical interaction of tiagabine with a model of human voltage-gated ion channels (VGICs) is described using the molecular docking method. The obtained in silico results imply that the adverse effects reported so far in the clinical cardiological of tiagabine could not be directly attributed to its interactions with VGICs. This is also confirmed by the results from the isolated organ studies (i.e., calcium entry blocking properties test) and in vivo (electrocardiogram study) assays of the present research. It was found that tachycardia and other tiagabine-induced cardiac complications are not due to a direct effect of this drug on ventricular depolarization and repolarization.


Assuntos
Canais de Cálcio Tipo L/química , Canal de Potássio ERG1/antagonistas & inibidores , Epilepsia/tratamento farmacológico , Coração/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/química , Tiagabina/farmacologia , Potenciais de Ação , Animais , Anticonvulsivantes/efeitos adversos , Canais de Cálcio Tipo L/metabolismo , Simulação por Computador , Canal de Potássio ERG1/metabolismo , Epilepsia/complicações , Epilepsia/metabolismo , Humanos , Masculino , Simulação de Acoplamento Molecular/métodos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos , Ratos Wistar , Tiagabina/efeitos adversos
13.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208184

RESUMO

The antitumor drug, oxaliplatin, induces neuropathic pain, which is resistant to available analgesics, and novel mechanism-based therapies are being evaluated for this debilitating condition. Since activated microglia, impaired serotonergic and noradrenergic neurotransmission and overexpressed sodium channels are implicated in oxaliplatin-induced pain, this in vivo study assessed the effect of minocycline, a microglial activation inhibitor used alone or in combination with ambroxol, a sodium channel blocker, or duloxetine, a serotonin and noradrenaline reuptake inhibitor, on oxaliplatin-induced tactile allodynia and cold hyperalgesia. To induce neuropathic pain, a single dose (10 mg/kg) of intraperitoneal oxaliplatin was used. The mechanical and cold pain thresholds were assessed using mouse von Frey and cold plate tests, respectively. On the day of oxaliplatin administration, only duloxetine (30 mg/kg) and minocycline (100 mg/kg) used alone attenuated both tactile allodynia and cold hyperalgesia 1 h and 6 h after administration. Minocycline (50 mg/kg), duloxetine (10 mg/kg) and combined minocycline + duloxetine influenced only tactile allodynia. Seven days after oxaliplatin, tactile allodynia (but not cold hyperalgesia) was attenuated by minocycline (100 mg/kg), duloxetine (30 mg/kg) and combined minocycline and duloxetine. These results indicate a potential usefulness of minocycline used alone or combination with duloxetine in the treatment of oxaliplatin-induced pain.


Assuntos
Cloridrato de Duloxetina/farmacologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Neuralgia/tratamento farmacológico , Oxaliplatina/toxicidade , Limiar da Dor/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Antibacterianos/farmacologia , Antineoplásicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Combinação de Medicamentos , Masculino , Camundongos , Microglia/fisiologia , Neuralgia/induzido quimicamente , Neuralgia/patologia
14.
Eur J Med Chem ; 221: 113512, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015586

RESUMO

γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Antidepressivos/farmacologia , Desenvolvimento de Medicamentos , Inibidores da Captação de GABA/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antidepressivos/síntese química , Antidepressivos/química , Relação Dose-Resposta a Droga , Inibidores da Captação de GABA/síntese química , Inibidores da Captação de GABA/química , Humanos , Estrutura Molecular , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Relação Estrutura-Atividade
15.
J Pain Res ; 14: 981-992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33883930

RESUMO

PURPOSE: The poorly soluble nonsteroidal anti-inflammatory drug (NSAID), tolfenamic acid (TA), was studied to maximize its solubility, permeability through biological membranes, and pharmacological activity. METHODS: A mixture with magnesium stearate (MS) - microenvironment pH-modifier was prepared, as well as systems additionally containing incorporating substances methyl-ß-cyclodextrin (M-ß-CD) and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). The identification of TA-MS-CD systems was confirmed using experimental methods: X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR) with the theoretical support. Apparent solubility study was performed using the paddle apparatus, while in vitro gastrointestinal tract (GIT) and blood-brain barrier (BBB) permeability were conducted by using PAMPA (Parallel Artificial Membrane Permeability Assay). The in vivo part of the study used the mouse nitroglycerin (NTG)-induced migraine pain model. RESULTS: From practically insoluble substance, TA in TA-MS-M-ß-CD system dissolved up to 80.13% ± 2.77%, and in TA-MS-HP-ß-CD up to 92.39% ± 3.25% in 180 minutes. An increase in TA permeability was also obtained in the TA-MS-M-ß-CD and TA-MS-HP-ß-CD systems through GIT membranes (Papp values 2.057 x 10-5 cm s-1 and 2.091 x 10-5 cm s-1, respectively) and through BBB (Papp values 3.658 x 10-5 cm s-1 and 3.629 x 10-5 cm s-1, respectively). The enlargement of the solubility and permeability impacted analgesia. The dose 25 mg/kg of both TA-MS-HP-ß-CD and TA-MS-M-ß-CD was almost equally effective and only slightly less effective than the dose 50 mg/kg of pure TA. Both TA-MS-HP-ß-CD and TA-MS-M-ß-CD used at 50 mg/kg more effectively attenuated tactile allodynia in NTG-treated mice than the same dose of pure TA. None of TA forms influenced heat hyperalgesia. CONCLUSION: Increasing solubility of TA caused an increase of its analgesic effect in an animal model of migraine pain.

16.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924258

RESUMO

Fibromyalgia is a disease characterized by lowered pain threshold, mood disorders, and decreased muscular strength. It results from a complex dysfunction of the nervous system and due to unknown etiology, its diagnosis, treatment, and prevention are a serious challenge for contemporary medicine. Impaired serotonergic and dopaminergic neurotransmission are regarded as key factors contributing to fibromyalgia. The present research assessed the effect of serotonergic and dopaminergic system modulators (vortioxetine and ropinirole, respectively) on the pain threshold, depressive-like behavior, anxiety, and motor functions of mice with fibromyalgia-like symptoms induced by subcutaneous reserpine (0.25 mg/kg). By depleting serotonin and dopamine in the mouse brain, reserpine induced symptoms of human fibromyalgia. Intraperitoneal administration of vortioxetine and ropinirole at the dose of 10 mg/kg alleviated tactile allodynia. At 5 and 10 mg/kg ropinirole showed antidepressant-like properties, while vortioxetine had anxiolytic-like properties. None of these drugs influenced muscle strength but reserpine reduced locomotor activity of mice. Concluding, in the mouse model of fibromyalgia vortioxetine and ropinirole markedly reduced pain. These drugs affected emotional processes of mice in a distinct manner. Hence, these two repurposed drugs should be considered as potential drug candidates for fibromyalgia. The selection of a specific drug should depend on patient's key symptoms.


Assuntos
Agonistas de Dopamina/farmacologia , Fibromialgia/tratamento farmacológico , Indóis/farmacologia , Dor/tratamento farmacológico , Vortioxetina/farmacologia , Animais , Modelos Animais de Doenças , Dopamina/genética , Fibromialgia/genética , Fibromialgia/patologia , Humanos , Camundongos , Dor/genética , Dor/patologia , Limiar da Dor , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Serotonina/genética , Transmissão Sináptica/efeitos dos fármacos
17.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503911

RESUMO

BACKGROUND: Wide use of oxaliplatin as an antitumor drug is limited by severe neuropathy with pharmacoresistant cold hypersensitivity as the main symptom. Novel analgesics to attenuate cold hyperalgesia and new methods to detect drug candidates are needed. METHODS: We developed a method to study thermal preference of oxaliplatin-treated mice and assessed analgesic activity of intraperitoneal duloxetine and pregabalin used at 30 mg/kg. A prototype analgesiameter and a broad range of temperatures (0-45 °C) were used. Advanced methods of image analysis (deep learning and machine learning) enabled us to determine the effectiveness of analgesics. The loss or reversal of thermal preference of oxaliplatin-treated mice was a measure of analgesia. RESULTS: Duloxetine selectively attenuated cold-induced pain at temperatures between 0 and 10 °C. Pregabalin-treated mice showed preference towards a colder plate of the two used at temperatures between 0 and 45 °C. CONCLUSION: Unlike duloxetine, pregabalin was not selective for temperatures below thermal preferendum. It influenced pain sensation at a much wider range of temperatures applied. Therefore, for the attenuation of cold hypersensitivity duloxetine seems to be a better than pregabalin therapeutic option. We propose wide-range measurements of thermal preference as a novel method for the assessment of analgesic activity in mice.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Temperatura Baixa , Modelos Animais de Doenças , Cloridrato de Duloxetina/farmacologia , Temperatura Alta , Masculino , Camundongos , Oxaliplatina/farmacologia , Medição da Dor/métodos , Pregabalina/farmacologia , Temperatura
18.
Arch Pharm (Weinheim) ; 354(1): e2000225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32939789

RESUMO

A focused library of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and their nonimide analogs were synthesized and tested for anticonvulsant activity. These compounds were obtained through the coupling reaction of the starting carboxylic acids with appropriate amines. The initial anticonvulsant screening was performed in mice (intraperitoneal administration) using the maximal electroshock seizure (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models. The most promising compound 6 showed more potent protection in the MES and scPTZ tests than valproic acid, which is still recognized as one of the most relevant first-line anticonvulsants. The structure-activity relationship analysis revealed that the presence of the pyrrolidine-2,5-dione ring is important but not indispensable to retain anticonvulsant activity. Additionally, compound 6 showed potent antinociceptive properties in the oxaliplatin-induced neuropathic pain model in mice. The most plausible mechanism of action for compound 6 may result from its influence on the neuronal sodium channel (Site 2) and the high-voltage-activated L-type calcium channel.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Modelos Animais de Doenças , Eletrochoque , Masculino , Camundongos , Dor/tratamento farmacológico , Pentilenotetrazol , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade , Ácido Valproico/farmacologia
19.
Eur J Pharmacol ; 886: 173540, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32896552

RESUMO

Anticonvulsant drugs are used to treat a wide range of non-epileptic conditions, including chronic, neuropathic pain. We obtained a phenoxyalkylaminoalkanol derivative, KM-416 which had previously demonstrated a significant anticonvulsant activity and had also been shown to bind to 5-HT1A, α2-receptors and SERT and not to exhibit mutagenic properties. As KM-416 is a promising compound in our search for drug candidates, in the present study we further assessed its pharmacological profile (analgesic, local anesthetic, and antidepressant-like activities) accompanied with patch-clamp studies. Considering the importance of drug safety, its influence on the cardiovascular system was also evaluated. Moreover, KM-416 was subjected to forced degradation and pharmacokinetic studies to examine its stability and pharmacokinetic parameters. KM-416 revealed a significant antinociceptive activity in the tonic - the formalin test, neurogenic - the capsaicin test, and neuropathic pain model - streptozotocin-induced peripheral neuropathy. Moreover, it exerted a local anesthetic effect. In addition, KM-416 exhibited anti-depressant like activity. The results from the patch-clamp studies indicated that KM-416 can inhibit currents elicited by activation of NMDA receptors, while it also exhibited a voltage-dependent inhibition of Na+ currents. KM-416 did not influence ventricular depolarization and repolarization. Following oral administration, pharmacokinetics of KM-416 was characterized by a rapid absorption in the rat. The brain-to-plasma AUC ratio was 6.7, indicating that KM-416 was well distributed to brain. The forced degradation studies showed that KM-416 was very stable under stress conditions. All these features made KM-416 a promising drug candidate for further development against neuropathic pain and epilepsy.


Assuntos
Analgésicos/farmacologia , Anestésicos Locais/farmacologia , Anticonvulsivantes/farmacologia , Antidepressivos/farmacologia , Analgésicos/química , Analgésicos/farmacocinética , Anestésicos Locais/química , Anestésicos Locais/farmacocinética , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Antidepressivos/química , Antidepressivos/farmacocinética , Área Sob a Curva , Encéfalo/metabolismo , Capsaicina/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Estabilidade de Medicamentos , Epilepsia , Cobaias , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Medição da Dor , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia
20.
Eur J Med Chem ; 208: 112766, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919297

RESUMO

A series of tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors was designed and synthesized. Compounds were optimized in terms of potency, selectivity, and synthetic accessibility. The crystal structure of the inhibitor 18 in complex with BChE revealed the molecular basis for its low nanomolar inhibition (IC50 = 2.8 nM). The favourable in vitro results enabled a first-in-animal in vivo efficacy and safety trial, which demonstrated a positive impact on fear-motivated and spatial long-term memory retrieval without any concomitant adverse motor effects. Altogether, this research culminated in a handful of new lead compounds with promising potential for symptomatic treatment of patients with Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Nootrópicos/uso terapêutico , Triptofano/análogos & derivados , Triptofano/uso terapêutico , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/toxicidade , Relação Estrutura-Atividade , Triptofano/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...